
1

An Ephemeral Approach to 3D Character Rigging

A Thesis

Presented to the Faculty of

the Department of Computer Science and Information Technology

Kutztown University of Pennsylvania

Kutztown, Pennsylvania

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Patrick E Stelmach

May 2022

2

Abstract

All 3D animated characters share one thing in common: a rig. The rig is what controls a

character’s movements. Nearly all rigs are manipulated through two basic methods: forward and

inverse kinematics. The two kinematics need to blend together to achieve the full range of

behavior desired by the animator. For the past 20 years, this blend has been achieved by

swapping the character’s rig between two separate kinematic rigs. This blending is clunky,

unintuitive, and prone to mismatches and instability.

This thesis focuses on a new approach to rigging with a design called ephemeral rigging.

Instead of two separate rigs preset in either forward or inverse kinematics and constantly

swapped between, each joint in the character’s rig is treated as a node with possible incoming

and outgoing connections. When the animator interacts with a joint, the connections are created

at that moment in the specified kinematics mode chosen by the animator. This allows one rig to

act as both forward and inverse, reducing complexity and increasing ease of use.

3

Acknowledgements

I wish to express my appreciation to all of those who have made this thesis possible.

My sincere thanks go to Dr. Spiegel for the direct and intense encouragement to push

myself and learn, understand, and appreciate far more than I could have hoped for.

Also, I would like to thank my advisor, Prof. Pham, for constantly challenging me and

giving me motivation to overcome obstacles.

 In addition, I would like to thank Dr. Fry for her encouragement to pursue a Master’s

degree and Dr. Carelli for taking the time to remediate my thesis paper.

 To my family, I would like to thank you all for your support and encouragement

throughout the past ten years of me finding my path.

To my wonderful wife, I love you for the support you’ve given me and I thank you for

your patience through the many nights and weekends I have spent tied to my computer.

4

Table of Contents

Abstract ... 2

Acknowledgements ... 3

List of Figures ... 6

Glossary ... 7

1. Introduction ... 11

2. Background ... 14

2.1 - Overall Rigging Concepts ... 14

2.2 - Forward Kinematics .. 16

2.3 - Inverse Kinematics .. 17

2.4 - Benefits and Drawbacks of Both Kinematic Systems ... 18

3. Ephemeral Rig Concepts ... 21

4. Tools and Technologies .. 25

4.1 - Autodesk Maya ... 25

4.2 - Visual Studio ... 26

4.3 – C++, Python or MEL .. 27

4.4 - Maya API Objects ... 28

4.5 - Dirty Nodes ... 30

5. Design and Implementation .. 31

5.1 – Design Overview .. 31

5.2 - Scene at Rest ... 35

5.3 - Four Interaction Modes ... 35

5.4 - Walk Nodes ... 37

5.5 - Update Locators .. 40

5.6 - Forward Mode Details ... 41

5.7 - Pseudo Inverse Mode Details .. 44

5.8 - Inverse Mode Details .. 47

5.9 – Suspended Mode Details .. 50

5.10 - Ephemeral Mode Destruction.. 51

6. Conclusion and Future Work .. 53

6.1 – Summary ... 53

6.2 – Shortcomings and Future Work .. 53

5

6.3 – Conclusion .. 56

Bibliography .. 57

Appendices .. 59

Appendix A - Design Diagrams .. 59

Appendix B - Illustrative Code Snippets ... 64

6

List of Figures

Figure 1: Components of a 3D Character ... 11
Figure 2: Control Vertex Animation in Terminator 2 ... 12
Figure 3: Skeleton Inside 3D Model ... 15
Figure 4: Joint Influence Map on Mesh .. 16
Figure 5: Using Forward Kinematics to Grab a Cup .. 17
Figure 6: Using Inverse Kinematics to Grab a Cup .. 18
Figure 7: Switching from FK to IK... 20
Figure 8: Ephemeral Connection Overview ... 22
Figure 9: Illustrating the DG and DAG Nodes in Maya ... 26
Figure 10: Generic Maya Node Structure ... 29
Figure 11: Class Diagram of Ephemeral System .. 32
Figure 12: Ephemeral System Basics in Scene ... 33
Figure 13: Ephemeral System Connections in Connection Graph ... 33
Figure 14: Overview of the Setup for the Four Interaction Modes ... 36
Figure 15: Walk Nodes Example. ... 38
Figure 16: Walk Nodes Flowchart .. 39
Figure 17: Update Locators Flowchart ... 40
Figure 18: Forward Mode Example .. 42
Figure 19: Forward Mode Creation .. 43
Figure 20: Pseudo-Inverse Example ... 44
Figure 21: Pseudo Inverse Creation .. 45
Figure 22: Inverse Mode Example .. 47
Figure 23: Inverse System Creation .. 49
Figure 24: Ephemeral Graph Destruction ... 51

Figure A1: Walk Nodes Details .. 59
Figure A2: Update Locators Details ... 60
Figure A3: Forward Mode Details .. 61
Figure A4: Pseudo Inverse Details ... 62
Figure A5: Inverse Mode Details .. 63

Figure B1: Walk Nodes Code ... 64
Figure B2: Ephemeral Node Compute .. 65
Figure B3: Master Node System Constructor ... 68
Figure B4: Master Node Graph Destructor ... 70

7

Glossary

 Application Programming Interface (API) – a pre-built connection that acts as an

intermediary between two programs. In this case, the connection is between Maya and

Visual Studio.

 Callbacks – a function in Maya that upon hearing a requested event calls a separate pre-

defined function. This function can be passed data related to the requested event.

 Child – An object placed below another (a parent) in a hierarchy. The child follows and

mimics the parent’s movements.

 Directed Acyclic Graph (DAG) Nodes – A Dependency Graph (DG) node that also

exists in 3D space.

 Dependency Graph (DG) Nodes – Maya has a wide variety of nodes that all serve

different functions. All of the nodes in Maya are Dependency Graph nodes.

 Dirty – a state of an MPlug. If the MPlug’ state is dirty, Maya will recalculate the value

of this plug.

 Dynamic typing – When the majority of data type checking is performed at run time.

 Edge – The point where any two polygon faces meet.

 Ephemeral – An item that is transitory and exists very briefly.

 Ephemeral rig – A rig that dynamically constructs and destroys the connections between

nodes based on user settings.

 Face – The area between vertices and edges on a 3D model. Faces make up the faceted

visible form of the model, seen in Figure 1.

 Forward Kinematics (FK) – A rigging system in which the rotation propagates forwards

down a chain of joints.

8

 Integrated Development Environment (IDE) – Software environment and supporting

tools for building software applications. Combines common developer’s tools into a

single interface. In this paper, the IDE used is Visual Studio 2019.

 Interpreter – Translates written code into machine code.

 Inverse Kinematics (IK) – A rigging system where the animation propagates up the

joint tree in a reverse direction. The child joint is moved in the scene, and all its parents

are placed to maintain their relationship to that child.

 IK Handle – An object inside Maya that calculates IK transformations on a joint chain.

 Keyframe – A marker that specifies an object’s position and attributes at a given point in

time inside Maya.

 Local Space – the position of an object in respect to its parent objects.

 Locator – A DAG Node object in Maya that only has transformation values.

 Matrix – A single object that contains all nine transformation channels. These are

translation, rotation, and scale in the X, Y, and Z axis. The matrix can be read and

modified either through the matrix MPlug, or can be decomposed and used with all nine

transformation MPlugs.

 Maya – The 3D software package that contains the ephemeral system.

 MFnDependancyNode – A dependency node function set which allows the creation and

manipulation of DG nodes. This is used to access attributes inside an MObject.

 MObject – A generic class for internal Maya objects. These MObjects act as containers

for data. An MObject can contain simple data, such as an integer, or complex data, such

as other MObjects. MObjects are all Directed Graph (DG) nodes.

9

 MPlug – A connection point into an object’s attributes. All attributes have a related plug,

which can fetch and set the internal data.

 MPxNode – The base class of all user defined nodes in Maya. An MPxNode is also

referred to as a Directed Graph (DG) node, which was discussed earlier. Included in this

object is a constructor, destructor, and a compute function, which controls the behavior of

the node.

 MString – A Maya string. Required for use in Maya functions instead of std::string. It is

a type of character string and can be treated as such.

 Node – A single data structure. A node contains data and is usually connected to other

nodes.

 Object Oriented Design – A system of interacting objects used to solve a software

problem.

 Parent – An object above another (a child) in a hierarchy.

 Parent Constraint – A constraint controlled by Maya between a child and parent object.

The child object follows all the parent object’s translations and rotations.

 Plugin – A program that can be added to Maya to add new functions or improve existing

behavior.

 Recursive – When a program calls itself one or more times until a specific condition is

met to exit the program.

 Rig – A series of connected digital bones that are used to animate a 3d character model.

 Rotate Pivot – the pivot of an object in the scene. Is usually read and set as world space

instead of local space.

 Static typing – When the majority of data type checking is done at compile time.

10

 Threading – a set of instructions designed and run independently of the parent process.

 Vertex – A point of intersection between three or more edges in a 3D model.

 World Space – the position of an object in the scene, regardless of parent transformation

values.

11

1. Introduction

Rigging is not a new concept. The term rigging originally referred to the ropes and chains

used to move a ship’s masts and sails. Using ropes to give an object movement was adapted into

rigging puppets with string so they could dance around a stage. As animation made its way off

the stage and into film, new rigging systems were needed, as a marionette’s hanging strings were

difficult to hide and too imprecise. To resolve this, wire skeletons that mirrored standard human

anatomy were placed inside miniature posable figures. The animators would pose these skeletons

into precise stances to create and film stop motion animation.

The transition to the digital 3D space brought about a new set of challenges. Digital

characters are made of polygons. These polygons have several features, such as faces, edges, and

vertices. To create motion, the vertex positions of these polygons need to be updated over time.

Several different methods were designed to rig and animate these vertices as the understanding

of computers and their capabilities evolved.

Figure 1: Components of a 3D Character

12

When the first digital characters were created, there was not enough computing power for

an internal skeleton to control a model. A brute force approach to control the vertices was

developed. The original character models were animated with control vertex animation, which is

“the keyframed animation of the individual vertices of a mesh” (Vertex Animation, 2021). This

forced the artists to work as mathematicians by calculating the position change for each vertex

on the 3D model and manually updating each vertex for every frame. In addition to the tedium of

manipulating every vertex, there was growing demand for fidelity. To increase the realism, more

polygons and vertices were added to models, which increased the workload for control vertex

animation. “While preparing explicit data for each key-frame was satisfactory in 1972, today’s

demand for realism is much higher, resulting in the number of vertices growing by several orders

of magnitude. Considering such models, manufacturing each key-frame is no longer feasible”

(Radovan & Pretorius, 2006). Control vertex animation was used in films such as Terminator 2,

but was incredibly time-consuming and prone to failure.

Figure 2: Control Vertex Animation in Terminator 2 (Industrial Light and Magic, 1993)

13

Once computer power increased, armatures similar to those used in stop motion became

the most common method used to animate virtual characters due to the versatility of the system

and the ease of understanding for the animators. These rigs use internal joints that are bound to

the mesh and drive the vertex movements. The mathematical methodology used in driving these

joints breaks down into two different processes: forward kinematics and inverse kinematics.

Forward kinematics consists of rotating each joint down a limb to reach the desired pose. Inverse

kinematics starts with the end of the limb placed in its final position and the leading joints are

then posed automatically. Nearly all modern rigs use a combination of these two processes,

which will be explained later in further detail. These processes work in opposition to each other,

and need multiple rigs and animator intervention to operate on the same character. This thesis

postulates a system that merges the functionality of both processes by creating connections

dynamically. In this system, there is a central node that stores data and global functions, and each

joint of the rig has an associated ephemeral node which stores data and procedures for that joint.

The 3D environment used for development of this tool is Autodesk Maya, which is an

industry standard. The code for the plugin was written in C++ and developed inside Visual

Studio. These software packages will be explained in greater detail, along with the reasoning

behind their selection. The focus of this thesis is on a humanoid rig, but this system could be

adapted to other non-humanoid characters as well.

14

2. Background

2.1 - Overall Rigging Concepts

 This thesis focuses on modifying a traditional humanoid rig into an ephemeral system. To

understand the importance of this change, one must also understand the universal rigging

standard used today.

 A modern character rig uses an armature inside the character. An armature is made of

bones and joints. These terms are used interchangeably and this thesis will refer to them as joints.

Some examples are upper and lower leg joints, multiple spine joints, along with joints for each

segment of the hand and fingers. Facial rigs will have some joints as well, primarily for jaw and

neck movement. There are additional rigging methods used for facial animation, which are

outside the scope of this system. Joints are placed in a similar location as the anatomical

equivalents are in humans. The joints are placed into a hierarchal system of parents and children.

An example relationship is the shoulder joint, which is the parent of the elbow joint, which, in

turn, is the parent of the wrist joint.

15

Every joint in the scene has a set influence over each vertex of the 3D character. The

influence controls how much that joint moves the model. This influence, which is illustrated in

Figure 4, informs the system how much to move each vertex when a specific joint is moved or

rotated. The colors in the figure represent how much the shoulder joint is affecting each vertex.

The closer the color is to white on the gradient, the more influence the joint has on that vertex.

This places the computational load on the computer, as the animator only needs to focus on the

joint movement and not the model’s deformation.

Figure 3: Skeleton Inside 3D Model

16

Once the joints are connected to the character, additional mechanisms are added on top of

the joints to propagate animation through the system. The two most commonly used systems are

Forward Kinematics (FK) and Inverse Kinematics (IK).

2.2 - Forward Kinematics

 Forward Kinematics is a system in which the rotation of a parent joint propagates forward

down a chain of joints. If the shoulder joint is rotated, all the children of this joint, such as the

elbow and wrist, will follow that exact rotation from the shoulder’s pivot point. “In an FK system

the animator must specify all the parameters for degree of rotation and their order for each joint

in the hierarchy, to move the limb from point A to point B in 3D workspace” (Bhatti, Shah,

Shahidi, & Karbasi, 2013). FK requires the animator to move the parent joint, then work their

way down the chain to the lowest child. This system can be tedious to use as each joint needs to

be manually set, but is easy to understand and maintains volume well. FK is primarily used when

a limb needs to make an arcing motion, such as throwing a ball or swinging an arm while

Figure 4: Joint Influence Map on Mesh

17

walking. Also, fingers are almost always FK as they curl uniformly and unidirectionally, which

leverages FK’s strengths.

2.3 - Inverse Kinematics

Inverse Kinematics is a system where the animation propagates up the joint tree in a

reverse direction, with the child as the lead. The transformation and rotation of the parent joints

are calculated by the system to maintain the relative distance between all the affected joints.

“With IK, move the last child in the hierarchy and all its parent joints will rotate, in Inverse

motion or kinematics” (Bhatti et al., 2013). IK chains are usually limited to three joints because

Figure 5: Using Forward Kinematics to Grab a Cup

18

the computation becomes less predictable with several middle joints. IK systems are primarily

used in the arms and legs, while FK is used universally. IK is best for end-focused action, such

as picking up an object or planting a foot on the ground while walking.

2.4 - Benefits and Drawbacks of Both Kinematic Systems

 Both FK and IK have fundamental uses in animation, so nearly all modern rigs

implement both systems onto every character. The primary issue is that Forward Kinematics is

the functional opposite of Inverse Kinematics. The joint relationships cannot function in a system

where the parent is driving the child while the child is driving the parent. A common solution to

Figure 6: Using Inverse Kinematics to Grab a Cup

19

this is having three individual joint chains created for each character. One is specifically used for

FK, one is used for IK, and one is bound to the 3D character. The animator can then decide as

needed which of the two kinematic joint chains are driving the bound joint chain.

 Issues arise when the animator tries to switch between the two systems during the scene.

Since only one system can be active at a time, the FK and IK systems are animated separately.

When switching the bound joint chain from one mode to another, the placement of the bound

chain will update to the other’s location, overriding the previous animation. “Riggers are

therefore required to invert the rig and find the controller parameters of the target space that

match the character pose in the original space. A set of switches is usually provided, such as the

legs/arms IK/FK switch, many of which are complicated to write” (Corvazier & Robert, 2021).

Consider a character going to shake another character’s hand. The animator uses FK to swing the

arm in an arcing motion to the point of contact, then switches to IK as now the hand should drive

the action. However, the IK system was disabled and when the animator activates it, the bound

rig will change location to match where the IK system is. This overrides the FK system’s

animation, placing the arm in an unexpected location. Figure 7 illustrates another scenario where

a character is holding a cup. The arm was placed using FK mode. However, the animator now

wants to use IK for the next part of the animation. Since the IK system wasn’t active, the IK

joints are still sitting in their starting locations. Switching to IK causes the arm to change

position, which is not the desired outcome.

20

Figure 7: Switching from FK to IK

 Tools do exist to mitigate this disconnect, such as the Maya plugin “Universal IK FK

Switch and Match Tool” (Elbmann, 2017). This tool implements a system that updates the

position of the IK rig to match that of the FK rig on switch and vice versa. These tools need to be

configured on a case-by-case basis for each rig, add another layer of complexity on top of the rig,

and are opaque to the animator.

21

3. Ephemeral Rig Concepts

 The current solutions of blending between FK and IK are based around three joint chains,

with the bound chain swapping between the FK and IK chains. This thesis postulates a new

system that uses nodes instead of joint chains to control the relationship between FK and IK

modes. These nodes are created and stored outside the bound joint hierarchy. The relationships

between the nodes and the joints are created when needed, allowing the system to dynamically,

or ‘ephemerally’, switch between different relationship modes.

 The ephemeral nodes exist outside the joint chain and influence each joint directly. The

relationships between the nodes are static and predefined, but when the animator switches from

one mode to another, the connections between the joints are destroyed and reconfigured using

the ephemeral system’s static connections. This allows the animator to swap between modes at

any time as the joints are no longer affected by the old system and the new system is created in

place, solving any placement issues.

 As illustrated in Figure 8, the forward and inverse connections between the ephemeral

nodes are predefined. When the ephemeral nodes are in a neutral state, there are no connections

between the joints. Once the ephemeral nodes enter forward mode, the joints are connected

following a parent to child relationship. If the ephemeral nodes are set to inverse mode, the

connections between the joints are from child to parent. During any change of mode, the

connections between the joints are destroyed to make way for new connections.

22

 There are multiple benefits of the ephemeral rigging system. Since the rig is created in

place on demand, there is no need for the rigger to create separate FK and IK joint chains. Each

rig is created on a small scale behind the scenes when the animator requests it, and the rig

Figure 8: Ephemeral Connection Overview

23

automatically controls the bound joints. The ephemeral rigging system also removes the need for

blend systems and position updates, as there is no need to blend between static elements.

 The ephemeral rig is also easier for an animator to understand. Since the need to blend

between the systems is removed, the animator can simply choose the mode they want at that

moment and drive the interaction. They do not need to compensate for any lag between FK and

IK communication or learn technical relationships to interact with the rig.

 Since the ephemeral rig is node-based and outside the hierarchy, it gains the benefit of

encapsulating its own functionality. During production, modifications might need to be made to

a rig. Because the code is contained within the ephemeral rig, a developer can modify the

plugin’s code, add new functionality, or repair unexpected behavior. These changes can then be

placed into an active scene without destroying any existing work.

Instead of basing the rig structure in a traditional hierarchy, the ephemeral rig is node

based. Using nodes rather than hierarchies to construct the rig mirrors the workflow that

developers and artists have in other production suites. Connections between nodes allow easy

mid-stream insertions and modifications that are prohibitive with hierarchal objects. While other

software such as SideFX’s Houdini (SideFX, 2022) and The Foundry’s Nuke (The Foundry,

2022) are used for different stages of production, they also use nodes instead of hierarchies to

allow more direct control of their data processing. “The data can be accessed or previewed at

different points of the process, as a snapshot of the input/output of a given node. This is quite

similar to the concepts behind Houdini’s node graph but quite foreign to Maya” (Nieto, Banks, &

Chan, 2018). Using nodes for the ephemeral rig gives a familiar workflow to developers

transitioning from other software into Maya and reduces the potential learning curve.

24

The inspiration of the ephemeral system was drawn from a SIGGRAPH paper published

in 2019 titled Fast, Interpolationless Character Animation Through "Ephemeral" Rigging. The

author created a plugin using Python to create an ephemeral system in Maya, similar to the one

discussed in this thesis. Anzovin’s ephemeral rig used dynamic rig construction to create

“interchangeable forward and "backward" kinematics” (Anzovin, 2019), which is the heart of the

ephemeral system discussed in this thesis. Anzovin’s paper also focused on changing the way the

animator interacted with the Maya timeline, which is outside the scope of this thesis.

25

4. Tools and Technologies

 The tools and technologies chosen for this thesis were selected primarily on their use in

the professional animation industry.

4.1 - Autodesk Maya

 Autodesk Maya is the most common 3D suite used in film and game production. It was

initially released in 1996 and quickly became an industry standard. “Maya’s been used on every

[Oscar] winning film since 1997…” (Terdiman, 2015). The versatility of this platform allows its

use in video games, film, advertisement, education, and other 3D industries.

 The program is built on C++ code (Stroustrup, 2021) and hosts a complex and

customizable user interface. Maya also provides an API for plugin creation in either C++ or

Python. It also supports a custom language MEL (Maya Embedded Language), which is used for

internal commands.

 Maya works as a collection of nodes operating inside a scene. “A Maya scene is a system

of interconnected nodes that are packets of data. The data within a node tells the software what

exists within the world of a Maya scene” (Derakhshani, 2015). All nodes in Maya are classified

as Dependency Graph (DG) nodes. DG nodes can store data, perform calculations, receive

inputs, and generate outputs. The nodes are stored in a network and use unidirectional edges to

connect to each other. There is a subclass of DG nodes called Directed Acyclic Graph (DAG)

nodes. These are nodes that also exist in 3D space. DAG nodes are always stored in a hierarchy

and have additional functionality specific to their relationship to other DAG nodes and the 3D

space.

26

 A humble cube in Maya sitting at the world origin has two nodes of its own and one more

connected to it. The cube has a transformation node, which is a DAG node, and shows in the

hierarchy on the left of Figure 9. This stores the location, rotation, and scale information of the

object, along with its hierarchal relationships to other objects. The cube also has a shape node,

which is a DG node. This node contains information about the vertices, edges, and faces that

make up the displayed object in the scene. Both nodes have a distinct function and are tied

together by Maya. The shape node is also connected to a shadingGroup node, which informs

Maya which material to display on the object.

Figure 9: Illustrating the DG and DAG Nodes in Maya

4.2 - Visual Studio

 The ephemeral rig plugin was written inside Visual Studio, which is an Integrated

Development Environment (IDE). This environment supports the programming language C++

27

(Microsoft, 2021), which was the programming language chosen for this project. Inside the

installed files for Maya is a developer kit with hundreds of included libraries used for the

creation of Maya plugins in C++. Visual Studio allows the inclusion of these libraries which are

necessary for the compilation of the coded plugin. The code is compiled into an .mll, which is a

Maya version of a .dll file. This .mll file is read in by Maya through its plugin API and allows

the functionality of the ephemeral rig into the Maya system.

4.3 – C++, Python or MEL

 When comparing the three programming languages of C++, Python, and MEL, C++ has

several measurable benefits. The first benefit is that C++ is far more efficient, especially during

execution. When a program is compiled, the written source code of the plugin is converted into

machine code. This machine code is what runs during the execution of the program. Python

needs an interpreter to run alongside the machine code. This is due to the dynamic typing used

by Python, which allows the user to not declare data types inside their written code, but forces

the system to compensate during execution. C++ uses static typing, so there is no need for an

interpreter. “Writing code in C++ is somehow difficult as compared to Python but when it comes

to performance, C++ gives excellent results. Research proves that languages like Python, PHP,

Java, and C# cannot compete with C++ in terms of speed and memory efficiency” (Zehra, Javed,

Khan, & Pasha, 2020). Predefining the variables in C++ does add complexity to writing the code,

but this is a tradeoff made for increased performance.

 A second benefit of C++ compared to Python is threading. Due to the interpreter, Python

is forced to run on a single thread. “Python’s global interpreter lock (GIL) forces all python

nodes to be scheduled serially. This prevents [the system] from evaluating efficiently and causes

a major bottleneck in system performance” (Kahwaty, Yoder, Lin, Lee, & Suroviec, 2019). C++,

28

however, can use multiple threads, which decreases run time. This is most applicable in the

recursive situations used in the functionality of the ephemeral plugin.

 A third benefit of C++ is the integrated concept of object-oriented design. Every node

created by the plugin is an instantiation of an ephemeral node, which encapsulates the

functionality of the system. Object-oriented design also encourages code reuse, as the objects

each contain a suite of functions that can be called at specific times. “The concept of software

reuse is not new and is used in many techniques, methods, and processes. These include

portability in the classical sense, code-sharing in successive release, common subsystems,

common routines (subroutines and functions of language constructs), and repeated exploitation

of algorithms” (Li & Kiran, 1996). This encapsulation also helps integrate with existing Maya

nodes, as the outputs and inputs can be controlled and obscure the internal functions. This is also

why C++ was chosen instead of MEL, as MEL is a scripting language, so it does not natively

support object-oriented design and classes.

4.4 - Maya API Objects

 The Maya API gives access to a multitude of incredibly specific objects. Nearly all of

these objects have connections or related objects that rely on each other to function. There are

several types of objects referenced throughout the explanation of the ephemeral rig. These are

defined in the glossary, but the most general object, an MObject, and its constituents are

explained here.

An MObject is primarily a storage device for data and can execute simple commands. As

an example, to read or modify the contents of a string value inside an MObject, or Maya Object,

several steps must be taken. Figure 10 shows the structure of this example MObject. First, the

29

node must be located in the Maya scene and the MObject tied to that node is stored. An

MFnDependency node must then be created. This dependency node allows access to the MPlugs

that are stored on the MObject. An MPlug is a connection point to an attribute inside the

MObject, which in this case contains the string. The specific MPlug relating to the desired string

attribute must be found next. Finally, the value contained inside that MPlug can be read and

modified through the built in Maya API functions.

Figure 10: Generic Maya Node Structure

30

4.5 - Dirty Nodes

All MPlugs in Maya can be marked as either dirty or clean, and start in a clean state. In

order to preserve computation time, Maya only updates an object’s values if the related MPlug is

marked as dirty and then the value is requested by another node. For example, when the user

moves a cube in the X Axis in the scene, the attribute plug for the X Axis of that cube is marked

as dirty, along with everything connected to that plug’s output. At the start of the next compute

cycle, Maya checks for any dirty plugs in the scene. Finding the dirty X Axis plug on the cube,

Maya then checks if the output is needed. Since the output is required by the scene to render

where the cube is, Maya calls the cube’s compute function, which handles updating the output.

Once the output is calculated, the plug is then marked clean.

When designing Maya MObjects, the designer must designate which attributes will dirty

others on the node. If an input value on the node is changed, Maya has no default way to know

which output, if any, should be marked dirty and require updating. These relationships are

usually declared during the creation of the MObject, but they can be declared during the run

dynamically.

The ephemeral rig uses these relationships to control when to update the node’s state. If

one of the ephemeral node’s inputs is updated, the ephemeral node is dirtied, and the compute

function is called. This controls the ephemeral system’s creation and destruction of the

temporary rigs.

31

5. Design and Implementation

5.1 – Design Overview

To implement the ephemeral rig, the plugin must be loaded into Maya through the plugin

interface. Once the plugin is loaded, the Maya scene needs to be set up with several

interconnected objects. Each object has a distinct role and relationship to the other objects.

At the core of the rig is a central object, the Master Node, along with an Ephemeral Node

for each joint in the rig. The master node acts upon all ephemeral nodes in the scene. The design

of the ephemeral rig is each independent ephemeral node in the scene does not have control over

the other ephemeral nodes. Each ephemeral node is only responsible for its own data

management and connections. The master node contains data structures to track the scene state,

including the current interaction mode the user has set (forward, inverse, etc.). One of the most

important internal objects to the master node is the activeEphNodeDict – a map object that stores

the name and MObject for each ephemeral node currently constrained in the active rig. The

master node also contains data structures that track constraints, IK handles, and temporary joints

created in the scene. Finally, the master node controls the creation, tracking, and destruction of

the temporary rigs created throughout the animation process.

32

The rig requires a joint skeleton bound to a 3D character model. This skeleton is what

drives the movement of the character by influencing the vertices of the object. The connection

between the character and the skeleton is handled by Maya outside the ephemeral rig, and is

common practice for all rigs.

Every joint in the bound skeleton needs several objects and connections for the

ephemeral rig to operate. First, the bound joint itself needs to be oriented and named. A locator,

which is an object with only transformation values, needs to be created at the same space and

orientation as the joint, and the joint needs to be constrained to follow this locator. A controller

will also share this exact space, and is what the animator will directly interact with to drive the

ephemeral rig. Finally, an ephemeral node needs to be created and connected to the controller.

Figure 11: Class Diagram of Ephemeral System

33

The controller’s translation and rotation will feed directly into the ephemeral node, informing it

of user updates.

Once each joint is set up with all the objects, the ephemeral nodes need to be connected.

Using built in attributes, the nodes are connected to other ephemeral nodes based on the desired

relationships. Forward connections are sent down the chain, so the shoulder ephemeral node’s

Forward Connection connects to the elbow’s Ephemeral Dependent, and the elbow’s Forward

Figure 12: Ephemeral System Basics in Scene

Figure 13: Ephemeral System Connections in Connection Graph

34

Connection connects to the wrist’s Ephemeral Dependent. The inverse is set up the same way,

where the wrist’s Inverse Connection connects to the elbow’s Ephemeral Dependent, and so on

up the chain. Each ephemeral node also stores the related locator name as a string inside an

internal attribute.

The locators that are connected to each joint serve a necessary purpose and are part of the

core of the ephemeral rig. They act as an in-between for the ephemeral rig and the bound

skeleton. Each joint’s locator and controller always share the same location in the scene. During

operation, the ephemeral rig creates constraints on the controllers. Additionally, keyframes,

which are constraints that store animation data, need to be connected to the rig. If both the

keyframes and ephemeral constraints were on the controllers, there could be possible conflicts

and unexpected behavior. Instead, the locators are set up to connect to the keyframes, which

separates the constraints and reduces unpredictability.

It is essential that the locator only has input connections from the keyframes. However,

the locator needs to follow the controller’s movement. The rig directly updates the locator

whenever the controller is moved. This allows the rig to create and destroy connections to the

controllers freely without worrying about damaging animation data. The relationship between the

controller and locator can be reversed so the locator sets the position of the controller. For

example, in animation playback, the locator has the animation data and moves in the scene. The

controller needs to follow the locator’s animation and the controller’s position is directly

updated. This ephemeral connection is part of what makes the rig so adaptable.

35

5.2 - Scene at Rest

 Once every ephemeral node is set up and all the connections are complete, the animator

can begin interacting with the rig. When the scene is at rest, there are no connections between the

controllers. The only connections are between the related ephemeral nodes, explained above,

which informs the rig of the scene’s layout.

 When an animator interacts with one of the controllers, the related ephemeral node needs

to be recomputed. The rig marks this node as dirty. On the next compute step, Maya calls the

compute function of the dirty ephemeral node, which then calls the master node to construct the

connections in the scene.

5.3 - Four Interaction Modes

 There are four modes the animator can set for the behavior of the ephemeral rig. The four

modes can be swapped between at will and only exist for the required time span.

The first interaction mode is Forward mode. When this mode is active, the manipulation

of the selected controller will directly affect all the child controllers. This mirrors the

functionality of an FK system. If the shoulder rotates in forward mode, the elbow and wrist will

follow from the shoulder’s pivot point.

The second interaction mode is Pseudo Inverse mode. This mode takes the delta of the

manipulated controller’s updated position compared to its starting position. The delta is then

divided and applied evenly to all controllers between the active controller and the uppermost

parent controller. If the wrist is moved 5 cm in the X axis while in pseudo inverse mode, the

36

elbow will move 2.5 cm in the X axis. The movement in this mode imitates IK, but does not

preserve volume like a traditional IK system.

The third interaction mode is Inverse mode. Inverse mode leverages Maya’s internal IK

capabilities to drive the rig. To do so, a temporary joint chain is created at the rig’s position and

is bound to a Maya IK Handle. The IK Handle calculates the IK movement. The temporary joint

chain is then set to update the ephemeral rig’s controllers, which move the joints in the rig.

Figure 14: Overview of the Setup for the Four Interaction Modes

37

The final mode is Suspended mode. Suspended mode permits the animator to directly

manipulate a single controller without affecting any others. This is primarily useful for fine detail

manipulations.

There are several reasons that there are two inverse modes. The primary reason is to

explore the possible solutions to an ephemeral IK rig. Without having prior experience with

ephemeral rigging, putting both inverse modes into practice allows the animator and rigger to

decide which mode they prefer. Comparing one to the other, the pseudo inverse mode is simpler

and more adaptable. The entirety of the calculations is contained inside the ephemeral rig, so any

Maya software changes would not affect the ephemeral rig’s performance. By increasing the

complexity of the calculation, the developer could increase the functionality of the pseudo

inverse mode to act closer to true IK or potentially as something else entirely. Inverse mode

depends on Maya’s existing IK calculations and has the benefit of reusing existing work.

However, inverse mode needs to create objects on demand and connect the necessary attributes.

This creation and manipulation has a higher chance of unforeseen consequences, as the attributes

and behavior of the temporary created objects are outside the ephemeral rig.

5.4 - Walk Nodes

 When the ephemeral rig is instructed to build forward, inverse, or pseudo inverse mode,

the first step is to search for connected nodes in either the forward or inverse direction. To reuse

code, each of these modes calls the function walkNodes. The functionality of walkNodes is

summarized here for reference. Figure A1 in Appendix A gives a more in-depth view of the steps

and data management.

38

 The purpose of walkNodes is to load into the master node every currently affected

ephemeral node based on the interaction mode and the animator’s selected controller. If the

animator selects the shoulder controller and is in forward mode, the connected nodes in that

direction to be found are elbow and wrist. WalkNodes discovers and stores the connected nodes

into the master node’s activeEphNodeDict.

 Walking through the function, walkNodes first checks if the current ephemeral node is

already stored in the activeEphNodeDict. If it is already stored, there is no reason to store this

node again, so the walkNodes function ends. If the active node is not stored, it is stored into the

activeEphNodeDict. The next step is to find the connected ephemeral nodes in the desired

direction. The function reads from the Forward Connection/Inverse Connection MPlug

(depending on mode) and grabs the connected ephemeral nodes. Then walkNodes is called

recursively on all the ephemeral nodes that were found from these connections, continuing the

process. If there are no connected ephemeral nodes, the function simply exits.

Figure 15: In this example, walkNodes is following the red connections from Forward
Connection on the shoulder to the Eph Dependent on the elbow, which then follows the same

connection to the wrist.

39

 The use of recursion has one primary purpose. If there is a branching path, for example at

the top of the spine going into two arms and a head, walkNodes will be able to travel down all

these paths and store each of the affected ephemeral nodes. Since multiple paths can be running

in multiple threads, the rig can’t rely that the MObjects were added in a linear parent to child

order. This means that in the activeEphNodeDict, the ephemeral node MObjects are stored using

the default C++ ordering instead of chronological ordering.

Figure 16: Walk Nodes Flowchart

40

5.5 - Update Locators

 The locators for each ephemeral node are not connected while at rest. The ephemeral rig

is set up in this manner to keep the inputs of the locators free from connections so they can be

keyframed without conflict. This setup does create an issue, as the locators need to be updated to

match the position of the respective controllers. The issue is resolved by having any dirtied

ephemeral node call a function named updateLocatorPosition. As updateLocatorPosition is used

in all four interaction modes, the functionality is outlined below to prevent unnecessary

repetition. A more detailed view can be found in Figure A2 in Appendix A.

UpdateLocatorPosition is usually called after the master node has finished setting up one

of the interaction modes and returned to the active ephemeral node to finish cleanup. During

updateLocatorPosition’s execution, the first step is to load the matrix for that ephemeral node’s

controller. The ephemeral node’s controller is found by accessing the MPlug connecting the

ephemeral node to the controller, and the controller’s MObject is stored. The world position

Figure 17: Update Locators Flowchart

41

matrix is retrieved from the controller. Next, the locator must be found. Every ephemeral node

contains the name of the associated locator as a string attribute. The locator is found in the scene

by name and the locator’s MObject is stored. Once the locator is stored, the values of the world

position matrix are used to set the matrix MPlug on the locator. When this is complete, the

locator shares the position of the controller and no permanent connection between the controller

and the locator was necessary.

 In addition to updating the locator position, the locator must also be marked dirty. At the

start of the compute for the ephemeral node, an overridden function from the Maya API is

automatically called. This function loads the locator object and finds the output MPlugs, which

are temporarily connected to all the input plugs on the ephemeral node. If any of the incoming

ephemeral node’s values are dirtied, such as when a controller moves or rotates, the locator’s

output plugs are dirtied as well. This is necessary as the bound joints are connected to the

locators. The dirty status of the locator outputs tells Maya to update the connected joints as well,

which is critical to the ephemeral rig moving the bound joint chain. Without this, Maya would

not calculate the updated positions of the joints and the joints would not move.

5.6 - Forward Mode Details

 Forward mode leverages parent constraints inside Maya to function. The end goal of

forward mode is that each controller is parent constrained to its parent controller. When the

parent controller selected by the animator is manipulated, each child controller follows its parent.

This mimics the functionality of a Forward Kinematics system.

42

Figure 18: Forward Mode Example

 In this example, the shoulder controller is rotated in forward mode. When the shoulder

controller is rotated, the shoulder ephemeral node is dirtied and Maya calls that node’s compute

function. The compute function calls the master node, passing the shoulder node’s MObject as a

reference. The master node first checks the isConstrained attribute of the shoulder ephemeral

node. If this value is set to true, there is no need to create a new network of constraints as they

already exist. The master node would then return to that ephemeral node to update the locator. If

the isConstrained value is false, the constraints need to be built.

 The master node calls walkNodes, discussed earlier, which populates the master node’s

activeEphNodeDict with the shoulder, elbow, and wrist ephemeral nodes. Once this list is

populated, the master node calls constrainByGraph on each ephemeral node in the

activeEphNodeDict.

43

 In constrainByGraph, using the incoming MPlugs, the controllers connected to each

ephemeral node and their parent’s ephemeral node are found. If there is no parent, as is the case

with the shoulder, no constraint is made. Otherwise, the child controller is then constrained to the

parent controller using a Maya MEL command. The resulting constraint is added to the master

node’s activeConstraintList, and the ephemeral node is marked as constrained.

After all the constraints are made, or if they already existed, the master node returns to

the active ephemeral node, which in this case is the shoulder. The active ephemeral node calls

updateLocatorPosition, which updates all the active locators to match the current position of the

Figure 19: Forward Mode Creation

44

controllers. Finally, the dirty plug on the ephemeral node that called this compute function is

marked as clean to inform Maya the calculation is complete. Figure 19 is a flow chart showing

the progression through the process. For a more detailed diagram, see Figure A3 in Appendix A.

5.7 - Pseudo Inverse Mode Details

 Pseudo Inverse Mode uses a mathematical formula to calculate the distance to move the

middle objects that are dependent upon the selected object’s position change. Pseudo inverse

mode mimics IK functionality, but does not maintain volume. The end goal of pseudo inverse

mode is to update the position of all the middle controllers to match a percentage of the active

controller’s movement.

Figure 20: Pseudo-Inverse Example

45

 In this example, the wrist is moved in the X axis. The wrist ephemeral node is dirtied and

the compute function is called. Once inside the compute function, the wrist ephemeral node calls

the master node. The same first few steps are identical to the forward mode, where the master

node checks to see if the wrist is already constrained and does not build any constraints if the

wrist’s isConstrained attribute is set to true.

 If the ephemeral node is not constrained, the master node goes into the pseudo inverse

mode section and calls walkNodes to populate the activeEphNodeDict with the wrist, elbow, and

shoulder MObjects. Once this is complete, the master node goes through each node in that

dictionary and sets the node’s attribute isConstrained as true using the MPlug. The master node

Figure 21: Pseudo Inverse Creation

46

also adds a dummy constraint to the activeConstraintList, as no Maya constraints are created for

pseudo inverse mode.

 At this point, the wrist is in the correct location and the related nodes are all marked as

constrained. Next, the rig needs to update the position and orientation of the middle node. To do

this, the master node returns to the wrist node, which checks if the interaction mode is in pseudo

inverse. Since it is, the updateMidControllers function is called. updateMidControllers takes the

activeEphNodeDict as a parameter, along with the active node, which in this example is the wrist

ephemeral node. The first step is to find and store a temporary list of all the middle nodes, which

in this case is only the elbow. Next, the delta of the wrist movement must be calculated. Using

the wrist controller MObject, which has the updated position, and the wrist locator, which is still

at the original position, the matrices of the two positions in world space are read and stored. The

locator is still in the old position since the final step of each compute updates the locator

position, and that has not been called yet.

The original (locator) values are subtracted from the new (controller) values, which

generates the delta of the move. This delta is divided by number of middle nodes plus 1, to

spread the values evenly over a chain. In this example, the only middle node is the elbow, so the

delta is divided by 2. In other examples, such as a spine, there could be multiple joints and the

effects would be spread out evenly.

The next step in pseudo inverse mode is to apply the divided delta to the middle node’s

controllers. The rotate pivot of the controller is set by adding the calculated delta to the

controller’s current world position. A formula is then applied to each active node where the

orientation of the controller is updated to point at its child. These two updates in tandem create

47

the IK behavior, where the parent joint positions and rotations are calculated in respect to the

child’s position.

 Once all the middle controllers are updated, updateLocatorPosition is called on each

ephemeral node and the locator positions are matched up to the controller positions. Finally, the

function returns to the wrist ephemeral node, which updates its own locator position, marks itself

as clean, and exits the compute. For a more detailed diagram, see Figure A4 in Appendix A.

5.8 - Inverse Mode Details

 Inverse mode takes advantage of Maya’s built in IK system to calculate the inverse

movement of the parent joints. Inverse mode creates a temporary joint chain that mirrors the

position of the controllers, creates an IK handle to calculate these joints, then constrains the IK

handle to the active controller. Inverse mode also updates the middle controller of the ephemeral

rig to match the middle joint of the temporary joint chain.

Figure 22: Inverse Mode Example

48

 In this example the wrist is moved in the scene. The wrist ephemeral node is dirtied and

the compute function is called. Once inside the compute function, the wrist ephemeral node calls

the master node. Just like in the previous modes, the master node checks to see if the wrist is

already constrained and exits back to the wrist ephemeral node if the isConstrained attribute is

set to true.

 If isConstrained is set to false, the master node enters the inverse mode section and calls

walkNodes to populate the activeEphNodeDict with the wrist, elbow, and shoulder ephemeral

nodes. The next step calls createJoints on the wrist ephemeral node to begin the process of

building and placing the temporary joints.

 The first step in creating the temporary joints is finding the wrist controller’s MObject

through the MPlug. Then, a temporary joint is created and named based off the ephemeral node’s

name. This joint’s name and MObject are stored in the master node in a vector named

activeJointVector. A vector is a C++ object that maintains the creation order, which matters for

the parenting and the creation of the IK handle, which happens later. The matrix of the active

controller is loaded and applied to the matrix of the new joint. The current scene now has a

temporary joint for the wrist ephemeral node, which shares position with the wrist controller.

 To create the rest of the temporary joints, the incoming connection to the wrist ephemeral

node, in this case the elbow, is found through the Inverse Connection MPlug. As long as there is

an incoming connection, createJoints is called recursively up the chain to create, name, and place

all the remaining joints. Once the joints are created, the joints are then set in the scene hierarchy

in a parent to child chain. In this example, the shoulder joint is set as the parent of the elbow

joint, which is the parent of the wrist joint. Finally, the wrist ephemeral node is marked as

constrained and control goes back to the master node. The result is a temporary joint chain

49

parented in the scene hierarchy and sharing the position of the current ephemeral rig’s joint

chain.

 Next, the master node creates and names the IK handle. The master node uses a MEL

command to create the handle, based on the front and back nodes in the ordered

activeJointVector. Then, the handle is constrained to the wrist ephemeral node’s controller so

that the handle follows the controller’s movements.

Figure 23: Inverse System Creation

50

 Finally, when control is passed back to the wrist ephemeral node, the parent controllers

need to be updated. Using a similar function to the updateLocatorPosition, the parent controllers

are matched to the matrix of their respective temporary joints. This is so the shoulder and elbow

controllers now follow the calculated temporary joints in Maya. Then, the updateLocatorPosition

function is called on the wrist’s locator, the wrist ephemeral node is marked clean, and the

compute exits. The result of this function is a temporary joint chain calculated by Maya’s inbuilt

IK system and applied to the ephemeral rig. For a more detailed diagram, see Figure A5 in

Appendix A.

5.9 – Suspended Mode Details

 Suspended mode is the simplest of the four ephemeral modes. In suspended mode, the

animator can move one controller and neither the parents nor the children will move or react.

The purpose is primarily for fine tuning. If the animator wants to modify the rig beyond standard

behavior, such as stretching the elbow out of place for an exaggerated effect, suspended mode

will allow that.

 Upon entering suspended mode, like all the others, the compute of the active node calls

the master node. Then, the master node checks if the active node is already constrained. If it is

not, the master node marks the active node as constrained and stores the ephemeral node’s

locator name and MObject in the master node. This allows the active ephemeral node to quickly

find and update its locator. Once this is done, the ephemeral node updates the locator’s position,

marks itself as clean, and exits.

51

5.10 - Ephemeral Mode Destruction

 Creating the ephemeral modes is the primary function of the rig, but to make the rig

dynamic these modes need to be destroyed. After the mode is used and the animator wants to

either change the active controller or the active mode, the previous mode needs to be

automatically cleaned up and the node values reset.

 Using a built-in Maya feature called callbacks, a listener is set up on the master node that

activates every time the selection changes in the scene or the ephemeral mode changes. This

callback calls the cleanup function, which methodically goes through all the temporary attributes

stored in the master node and does the necessary cleanup.

Figure 24: Ephemeral Graph Destruction

52

Upon first entering the cleanup function, the first check is on the master node’s

activeConstraintList, which is populated during the creation of any of the ephemeral modes. If

the activeConstraintList is empty, it is assumed there are no active ephemeral systems in the

scene, and there is nothing to clean up. This check is necessary as every selection change in the

scene starts the callback. If there is anything in the activeConstraintList, all cleanup steps are

completed in sequence. The first step is going through the activeConstraintList, deleting all the

constraints in the Maya scene stored in this list, then emptying the list. The next step is going

through and deleting, if applicable, all temporary joints and IK handles stored in the

activeJointVector and IKHandle from the Maya scene, which would have been created in inverse

mode, then emptying those lists. The final step is going through every node stored in the

activeEphNodeDict, setting each node as not constrained using that node’s isConstrained MPlug,

then clearing that list.

The end result is all temporary objects are removed, all affected nodes are marked clean

and not constrained, and the master node is back at the initial state. The Maya scene is at rest, the

controllers have no connections, and the ephemeral rig is ready for the next mode.

53

6. Conclusion and Future Work

6.1 – Summary

With the ephemeral rig fully set up and operational, the animator starts with the scene in

a neutral state. On demand, the animator can change between ephemeral modes which creates

and destroys the connections explained in Chapter 5. The forward mode mimics the FK

functionality and allows the animator to rotate down the chain. The pseudo inverse mode allows

the animator to move the child in the scene, and the middle joints follow the movement by half.

Each parent joint points to the child, as the shoulder always points toward the elbow, and so on

down the chain. The inverse mode builds a temporary IK system and connects to it, and the

suspend mode allows single joint manipulation. The animator can also add animation keys to the

locators, which store positions over time for animation. When the animation plays, a callback

fires in the scene that reverses the standard locator controller relationship. Usually, the controller

position is pushed onto the locator, as the animator only interacts with the controller. In playback

mode, the locators are moving to their animated positions, and the controllers are updated to

match. This demonstrates the inherent flexibility of the ephemeral rig, as the directionality can be

reversed when needed.

6.2 – Shortcomings and Future Work

With any new system, there are complications that reveal themselves once everything is

integrated. The most noteworthy complication is a consistent issue with inverse mode. During

creation of the temporary IK rig, the middle joint position sometimes changes when attaching the

temporary joints to the IK handle. This is due to Maya expecting a clean neutral state for the

joints when the IK handle is created. The joints are expected to have minimal rotation values and

54

be oriented on the same rotation axis. This is not the case, as the animator is moving the joints

around during the animation. Since the joints are not oriented cleanly, Maya moves the middle

joint to compensate. This reduces the viability of the full inverse mode and illustrates the

importance of encapsulating the IK functionality fully, which is the purpose of the pseudo

inverse mode. The animator can mitigate this movement by using the suspend mode to place the

middle joint back in the expected location, but the issue is still undesirable.

 In addition, there are several lessons learned along the way that could be applied to either

a new or updated version of the ephemeral rig. The first of these is the idea of storing the

controllers in a hierarchy, similar to a more traditional FK system, instead of the controllers

being unrelated to each other by default. This would essentially set the default state of the rig as

forward and remove the need for creating the parent constraints on compute. There would be

new challenges, such as preventing double transformations, as the parent controller might move

the child controllers inadvertently. The ephemeral rig should be flexible enough to overcome this

and would most likely be more efficient.

 Another change worth implementing is the application of callbacks and dirty node

propagation in the rig. The original design of the ephemeral rig was created with a simplified

knowledge of the capabilities of the Maya API, so more advanced concepts were not considered.

As development progressed, some callbacks were integrated. Using callbacks more consistently

throughout the design would have given more direct access to functions and cleaned up node

dirtying.

Dynamically linked attributes were added late in the process as well. Normally, attributes

only dirty the other attributes in the same node. In Maya, it is possible to have attributes from

one node dirty another node’s attributes. Not only was this dynamic link used so the controllers

55

could dirty the disconnected locators, but also it could have been implemented more consistently

throughout.

 Another design change involves the handling of keyframes. In the ephemeral rig,

keyframes are stored on the locators, as the locators’ connections are always clean. However, the

keyframes are partially hidden from the animator, making it difficult to know which frames have

animations. It is worth considering reversing the controller locator relationship. Instead of

constraining the controllers and having them ephemerally update the locators, the rig could

constrain the locators and update the controllers. This would allow the animator to key directly

on the controllers, which mimics how most rigs are controlled now, but maintains the clean

connections the ephemeral rig currently has.

Finally, it would have been interesting to add more complex calculations to the pseudo

inverse mode. Currently pseudo inverse mode does not fully conform to a true IK system, as it

does not maintain volume. Due to encapsulation, the function that calculates the movement could

be made more robust without affecting the rest of the rig. More thorough research is required to

implement the formulas needed to run a fully accurate IK system.

 Overall, an arm, as highlighted in this thesis, is a good proof of concept, but the

ephemeral rig is designed to be applied to a full humanoid character. The scope of this thesis

was limited to ensure the core systems are functional and reliable. Ephemeral rigging has the

potential to be a solution to common rigging problems, such as those found in an inverse foot rig.

Foot rigs need extra controls and blending to allow rolling, toe tapping, and heel motion, which

tend to be in layered systems. An ephemeral foot rig would allow all these motions by switching

between states as needed.

56

6.3 – Conclusion

The ephemeral rig, while still in the proof-of-concept stage, shows real promise with the

versatility offered. It both demonstrates the power of the Maya API and runs incredibly quickly

considering the number of calculations that need to be executed.

Overall, the concept of node based ephemeral rigging is a success and deserves further

research. Merging forward and inverse systems into one gives the animator more control over

their characters. The possibility of adding more modes beyond the ones discussed in this thesis is

also an exciting consideration. Other complex rigs, such as reverse foot IK, hand rigs, and tail

rigs, could all benefit from the ability to switch between modes dynamically. Node based

dynamic rigs could one day become the industry norm, separating the technical knowledge

requirement of the rig from artistic expression, allowing animators to quickly, easily, and

intuitively control their characters and interact with them in ways they never thought possible.

57

Bibliography

Anzovin, R. (2019). Fast, interpolationless character animation through "ephemeral" rigging.

ACM SIGGRAPH 2019 Talks. doi:https://doi.org/10.1145/3306307.3328165

Bhatti, Z., Shah, A., Shahidi, F., & Karbasi, M. (2013). Forward and Inverse Kinematics

Seamless Matching Using Jacobian. Sindh University Research Journal, 45(2), 1-3.

Corvazier, C., & Robert, T. (2021). How the rig design impacts the animation process. The

Digital Production Symposium. doi:https://doi.org/10.1145/3469095.3469278

Derakhshani, D. (2015). Introducing Autodesk Maya 2016. John Wiley & Sons, Incorporated. .

Elbmann, M. (2017). Universal IK FK Switch and Match Tool (PRO) 2.0.0 for Maya. [Computer

Software]. Retrieved from https://www.highend3d.com/maya/script/universal-ik-fk-

switch-and-match-tool-pro-for-maya

Industrial Light and Magic. (1993). Hollywood FX Masters - Terminator 2 CGI Special Effects.

Kahwaty, J., Yoder, W., Lin, A., Lee, G., & Suroviec, D. (2019). Optimizing rig manipulation

with GPU and parallel evaluation. ACM SIGGRAPH 2019 Talks.

doi:https://doi.org/10.1145/3306307.3328181

Li, W., & Kiran, R. (1996). An object-oriented design and implementation of reusable graph

objects with C++. Proceedings of the 1996 ACM Symposium on Applied Computing -

SAC '96. doi:https://doi.org/10.1145/331119.331433

Microsoft. (2021, September 9). C and C++ in Visual Studio. Retrieved from Microsoft

Documentation: https://docs.microsoft.com/en-us/cpp/overview/visual-cpp-in-visual-

studio?view=msvc-170

Nieto, J., Banks, C., & Chan, R. (2018). Abstracting rigging concepts for a future proof

framework design. Proceedings of the 8th Annual Digital Production Symposium.

doi:https://doi.org/10.1145/3233085.3233088

Radovan, M., & Pretorius, L. (2006, October). Facial animation in a nutshell: past, present and

future. Proceedings of the 2006 annual research conference of the South African institute

58

of computer scientists and information technologists on IT research in developing

countries, 71-.

SideFX. (2022). Houdini. [Computer Software]. Retrieved from

https://www.sidefx.com/products/houdini/

Stroustrup, B. (2021, May 13). C++ Applications. Retrieved from Stroustrup:

https://www.stroustrup.com/applications.html

Terdiman, D. (2015, January 15). And the Oscar for Best Visual Effects goes to...Autodesk's

Maya. Retrieved from VentureBeat: https://venturebeat.com/2015/01/15/hollywood-fx-

pros-i-want-to-be-an-oscars-maya-winner/

The Foundry. (2022). Nuke. [Computer Software]. Retrieved from

https://www.foundry.com/products/nuke-family/nuke

Vertex Animation. (2021, September 11). Retrieved from Valve Developer Community:

https://developer.valvesoftware.com/wiki/Vertex_animaion

Zehra, F., Javed, M., Khan, D., & Pasha, M. (2020). Comparative analysis of C++ and python in

terms of memory and Time. NED University of Engineering and Technology.

doi:https://doi.org/10.20944/preprints202012.0516.v1

59

Appendices

Appendix A - Design Diagrams

Figure A1: Walk Nodes Details

60

Figure A2: Update Locators Details

61

Figure A3: Forward Mode Details

62

Figure A4: Pseudo Inverse Details

63

Figure A5: Inverse Mode Details

64

Appendix B - Illustrative Code Snippets

MStatus ephemeralNode::walkNodes(std::map<std::string, MObject>& graphDict,

std::map<std::string, MObject>& locatorList,
std::map<std::string, MObject>& endNodeList,

 MObject& currentNodeMObject, std::string
connectionDirection) {

 MGlobal::displayInfo("walkNodes called!");

 MPlugArray plugArray;
 MPlug inputJointPlug;

 MFnDependencyNode currentNodeMDep(currentNodeMObject);

 //check to make sure this node isn't in the graphDict
 if (graphDict.count(currentNodeMDep.name().asChar()) != 0) {
 return MStatus::kSuccess;
 }

 //add this node to the graphDict
 graphDict.insert({ currentNodeMDep.name().asChar(), currentNodeMObject });

 //Get and store the locator
 MObject currentLocatorMObject = getLocatorMObject(currentNodeMObject);
 MFnDependencyNode locatorMDep(currentLocatorMObject);
 std::string locatorName = locatorMDep.name().asChar();
 locatorList.insert({ locatorName, currentLocatorMObject });

 //Get all nodes connected to whatever direction looking for (forward/inverse)
 if (connectionDirection == "Forward") {
 inputJointPlug = currentNodeMDep.findPlug("forwardConnection", true);//Gets the plug

for this attribute
 }
 else if (connectionDirection == "Inverse") {
 inputJointPlug = currentNodeMDep.findPlug("inverseConnection", true);//Gets the plug

for this attribute
 }

 inputJointPlug.connectedTo(plugArray, true, true);//Gets a list of all connections to this

plug

 //If there are no more nodes down this branch, store this node as an end node
 if (plugArray.length() == 0) {
 endNodeList.insert({ currentNodeMDep.name().asChar(), currentNodeMObject });
 MGlobal::displayInfo("End node:");
 MGlobal::displayInfo(currentNodeMDep.name());
 }

 //call walkNodes for every node in the list
 for (MPlug plug : plugArray) {
 MObject connectedNodeMObject = plug.node();
 ephemeralNode* currentNodePointer = (ephemeralNode*)&connectedNodeMObject;
 currentNodePointer->walkNodes(graphDict, locatorList, endNodeList,

connectedNodeMObject, connectionDirection);
 }

 return MStatus::kSuccess;
}

Figure B1: Walk Nodes Code

65

MStatus ephemeralNode::compute(const MPlug& plug, MDataBlock& data) {

 //Check if the plug is one of the active plugs
 if (plug != outputTransX && plug != outputTransY && plug != OutputTrans && plug !=
outputTransZ && plug != EphDependent &&
 plug != outputRotX && plug != outputRotY && plug != outputRotZ && plug != OutputRot) {
 return MS::kUnknownParameter;
 }

 //Add the callback © the joint positions on next idle step
 MObject thisMObject = this->thisMObject();
 MFnDependencyNode thisNodeMDep(thisMObject);
 std::string nodeName = thisNodeMDep.name().asChar();
 dirtyLocatorOnIdleCallbackID = MEventMessage::addEventCallback("idle",

dirtyLocatorOnIdleCallback, (void*)&thisMObject);
 locatorCallbackVector.push_back(dirtyLocatorOnIdleCallbackID);

 if (plug == outputRotX || plug == outputRotY || plug == outputRotZ || plug == OutputRot ||
 plug == outputTransX || plug == outputTransY || plug == outputTransZ || plug ==

OutputTrans) {

 //Sets the master node pointer
 if (this->masterNodePointer == NULL) {
 setMasterNodePointer(this->masterNodePointer);
 MGlobal::displayInfo(masterNodePointer->internalString);
 //Add this object to the list of all ephNodes in scene on the master node
 MObject currentNodeMObject = this->thisMObject();
 MFnDependencyNode currentNodeMDep(currentNodeMObject);
 masterNodePointer->ephNodeDict.insert({currentNodeMDep.name().asChar(),

currentNodeMObject});
 };

 //Call the build node graph on the master node
 MObject currentNodeMObject = this->thisMObject();
 masterNodePointer->buildNodeGraphFromConnections(currentNodeMObject,

masterNodeMObject);

 //If in inverse mode, update the parent controllers
 MDataHandle contraintModeString = data.inputValue(constraintMode);
 std::string constrainMode = contraintModeString.asString().asChar();
 if (constrainMode == "PseudoInverse" || constrainMode == "Inverse") {
 masterNodePointer->midNodeUpdateHelper(currentNodeMObject, constrainMode,

masterNodePointer);
 }

 //Update locator positions
 updateLocatorPosition(this->thisMObject(), "locator");

 MObject thisNode = plug.node();//Get this node
 MFnDependencyNode nodeFn(thisNode);//Convert to dependency node
 MString nodeName = nodeFn.name();//Get the name
 MGlobal::executeCommand("dgdirty -c " + nodeName);
 }

 data.setClean(plug);
 return MS::kSuccess;
}

Figure B2: Ephemeral Node Compute

66

MStatus masterNode::buildNodeGraphFromConnections(MObject& startNodeMObject, MObject&
thisMasterNodeMObject) {

 //If the start node is already constrained, exit
 MFnDependencyNode startNodeMDep(startNodeMObject);
 std::string startNodeName = startNodeMDep.name().asChar();
 MPlug isConstrainedPlug = startNodeMDep.findPlug("isConstrained", true);
 if (isConstrainedPlug.asBool() == true) {
 return MStatus::kSuccess;
 }

 std::vector<std::pair<std::string, MObject>> jointVector;

 ephemeralNode* startNodePointer = (ephemeralNode*)&startNodeMObject;

 if (!checkObjectInScene(thisMasterNodeMObject, "*masterNode*")) {
 MGlobal::displayError("No master node in scene!");
 return MStatus::kFailure;
 }

 //Make the dependency node
 MFnDependencyNode masterNodeMDep(thisMasterNodeMObject);

 //Get constraint mode
 MPlug constraintMode = masterNodeMDep.findPlug("constraintMode", false);
 std::string constraintModeString = constraintMode.asString().asChar();

 //Check if mode is forward
 if (constraintModeString == "Forward") {
 //call walkNodes on the startNode - store result into list (graphDict)
 startNodePointer->walkNodes(activeEphNodeDict, activeLocatorNodeDict,

 activeEndNodeDict, startNodeMObject, "Forward");

 for (auto pair : activeEphNodeDict) {
 //Check if the object is the selected one. If it is, don't need to constraint

it to the parent
 ephemeralNode* currentNodePointer = (ephemeralNode*)&pair.second;

 currentNodePointer->constrainByGraph(activeEphNodeDict, pair.second,

startNodeMObject, activeConstraintList);
 }
 }

 else if (constraintModeString == "Inverse") {
 //call walkNodes on the startNode - store result into list (graphDict)
 startNodePointer->walkNodes(activeEphNodeDict, activeLocatorNodeDict,

activeEndNodeDict, startNodeMObject, "Inverse");

 //Going to want to create joints in a similar manner to constrainByGraph
 startNodePointer->createJoints(activeEphNodeDict, jointVector,

activeEndNodeDict.begin()->second,
startNodeMObject, activeConstraintList);

 activeJointVector = jointVector;
 //There needs to be more than 1 joint to create the handle
 if (jointVector.size() > 1) {
 //Now there is a chain of all the joints - need to make IK handle
 std::string ikHandleName = startNodeName + "_ikh";

67

 std::string commandString = "ikHandle -n " + ikHandleName + " - sj " +
jointVector.front().first + " - ee " +
jointVector.back().first;

 MGlobal::executeCommand(commandString.c_str());

 //Constrain IK handle to wrist controller
 startNodePointer->constrainIKHandle(startNodeMObject, activeConstraintList,

ikHandleName);
 //Point constrain to controller
 //Have to connect rotate channels to handle inputs
 activeIKHandleName = ikHandleName;

 MObject inputControllerMObject = startNodePointer->

getConnectedNodeMObject(startNodeMObject, "inputTranslateX", false);
 MFnDependencyNode inputControllerMDep(inputControllerMObject);//Creates a

dependency node for getting the name

 //Since we are changing selection, we need to prevent the destruction that

gets called
 selectionDummyVect.push_back(1);
 selectionDummyVect.push_back(1);
 MGlobal::selectByName(inputControllerMDep.name(),

MGlobal::ListAdjustment::kReplaceList);
 }
 //Since no constraint is made if the chain is too short, a dummy one is created
 else {
 activeConstraintList.push_back("dummy");
 }
 }

 else if (constraintModeString == "PseudoInverse") {
 //call walkNodes on the startNode - store result into list (graphDict)
 startNodePointer->walkNodes(activeEphNodeDict, activeLocatorNodeDict,

activeEndNodeDict, startNodeMObject, "Inverse");
 //Set these nodes as constrained
 for (auto node : activeEphNodeDict) {
 MFnDependencyNode MDep(node.second);
 MPlug isConstrainedPlug = MDep.findPlug("isConstrained", true);
 isConstrainedPlug.setBool(true);
 //The constriant list can't be empty, but this doesn't make an in scene
constraint
 activeConstraintList.push_back("dummy");
 }

 }

 //Suspended mode
 else {
 //Set the node as constrained
 MPlug isConstrainedPlug = startNodeMDep.findPlug("isConstrained", true);
 isConstrainedPlug.setBool(true);

 activeEphNodeDict.insert({ startNodeMDep.name().asChar(), startNodeMObject });

 //get locator MObject and MFnDep
 MObject currentNodeLocatorMObject = startNodePointer->

getLocatorMObject(startNodeMObject);
 MFnDependencyNode currentNodeLocatorMDep(currentNodeLocatorMObject);

68

 //store into locator list so it updates
 activeLocatorNodeDict.insert({currentNodeLocatorMDep.name().asChar(),

currentNodeLocatorMObject});

 //Add dummy to list so there's something in it for destruction
 activeConstraintList.push_back("dummy");
 }

 MGlobal::displayInfo("All constraints:");
 for (std::string constraint : activeConstraintList) {
 MGlobal::displayInfo(constraint.c_str());
 }

 MGlobal::displayInfo("All nodes in chain:");
 for (auto pair : activeEphNodeDict) {
 MGlobal::displayInfo(pair.first.c_str());
 }

 return MStatus::kSuccess;
}

Figure B3: Master Node System Constructor

69

void masterNode::removeNodeGraphConnections(void* data) {
 MGlobal::displayInfo("callback fired!");

 //If there are no active constraints, no need to do anything
 if (activeConstraintList.empty()) {
 return;
 }

 else if (selectionDummyVect.size() != 0) {
 selectionDummyVect.pop_back();
 return;
 }

 MPlug destructPlug;
 destructPlug.setMObject(disableDestruction);
 bool test = destructPlug.asBool();
 if (destructPlug.asBool() == true) {
 return;
 }

 //If selecting an eph or master node, don't delete anything
 MSelectionList list;
 MObject currentSelectionMObject;

 MGlobal::getActiveSelectionList(list);//copy the selection list into temp list
 list.getDependNode(0, currentSelectionMObject);//Get this node path from the new

entry in list

 MFnDependencyNode currentSelectionMDep(currentSelectionMObject);//Get the dependancy

node for this node

 //If selected an eph node or the master node, don't destroy graph. Good for

debugging.
 if (currentSelectionMDep.typeId() == 0x00000001 ||

currentSelectionMDep.typeId() == 0x00000002) {
 return;
 }

 ConstraintFactory constrFactory;

 //for every constraint in constraint list
 //delete the constraints
 for (auto constraint : activeConstraintList) {
 constrFactory.deleteExistingConstraint(constraint);
 };

 activeConstraintList.clear();

 //Delete just the root joint - everything related will also destroy
 if (!activeJointVector.empty()) {
 std::string commandString = "delete " + activeJointVector[0].first;
 MGlobal::executeCommand(commandString.c_str());
 }

 activeJointVector.clear();

 //If there is an IKHandle, delete the name
 if (activeIKHandleName != "") {

70

 activeIKHandleName = "";
 }

 //for every node in the list of active constraint node
 //mark as not constrained
 for (auto activeEphNodePair : activeEphNodeDict) {
 //Get the MDep node
 MFnDependencyNode activeEphNodeMDep(activeEphNodePair.second);
 //check if object still exists in scene (can be lost during scene shutdown)
 MSelectionList tempList;
 MObject tempMObject;
 tempList.add(activeEphNodePair.first.c_str());
 tempList.getDependNode(0, tempMObject);
 if (checkObjectInScene(activeEphNodePair.second,

activeEphNodePair.first.c_str())) {
 MPlug isConstrainedPlug = activeEphNodeMDep.findPlug("isConstrained", true);
 isConstrainedPlug.setBool(false);

 //set the ephemeral node to clean
 MString cleanString = ("dgdirty - c " + activeEphNodePair.first).c_str();
 MGlobal::executeCommand(cleanString);
 }
 }

 //Clear the rest of the dictionaries
 activeEphNodeDict.clear();
 activeEndNodeDict.clear();
 activeLocatorNodeDict.clear();
}

Figure B4: Master Node Graph Destructor

